## Conway's Game of Life ## Rule 1 - Any live cell with fewer than two live neighbours dies (underpopulation) ## Rule 2 - Any live cell with two or three live neighbours lives ## Rule 3 - Any live cell with more than three live neighbours dies (overpopulation) ## Rule 4 - Any dead cell with epos.xactly three live neighbours becomes a live cell (reproduction) extends Node2D enum CellStates { DEAD, ALIVE, } @onready var generation_counter: Label = $CanvasLayer/Debug/VBoxContainer/GenerationCounter @onready var generation_timer: Timer = $GenerationTimer @onready var living_cells_counter: Label = $CanvasLayer/Debug/VBoxContainer/LivingCellsCounter @onready var world_seed_label: Label = $CanvasLayer/Debug/VBoxContainer/WorldSeed @export var world_seed: int @export var cell_size: Vector2 = Vector2(64, 64) @export var cell_texture: Texture2D @export var world_size: Vector2 = Vector2(8, 8) var cell_instance var generation: int = 1 var world: Array = [] var total_living: int = 0 func _ready() -> void: if not world_seed: world_seed = randi() seed(world_seed) world_seed_label.text = "World Seeed: %s" % world_seed generate_world() ## Check a cell against the Conway rules func check_cell_rules(pos: Vector2) -> void: var neighbors := count_living_neighbors(pos) var currently_alive = world[pos.x][pos.y] is RID # Rule 1 - Any live cell with fewer than two live neighbours dies (underpopulation) if currently_alive and neighbors < 2: kill_cell(pos) return # Rule 2 - Any live cell with two or three live neighbours lives elif currently_alive and (neighbors == 2 or neighbors == 3): total_living += 1 return # Rule 3 - Any live cell with more than three live neighbours dies (overpopulation) elif currently_alive and neighbors > 3: kill_cell(pos) return # Rule 4 - Any dead cell with epos.xactly three live neighbours becomes a live cell (reproduction) elif not currently_alive and neighbors == 3: total_living += 1 world[pos.x][pos.y] = create_cell(pos) return func count_living_neighbors(pos: Vector2) -> int: var count := 0 var x_min = 0 if pos.x - 1 < 0 else pos.x - 1 var y_min = 0 if pos.y - 1 < 0 else pos.y - 1 var x_max = world_size.x if pos.x + 2 > world_size.x else pos.x + 2 var y_max = world_size.y if pos.y + 2 > world_size.y else pos.y + 2 for x in range(x_min, x_max): for y in range(y_min, y_max): if x == pos.x and y == pos.y: continue # Current cell - Don't count if world[x][y] is RID: count += 1 return count func process_generation() -> void: generation += 1 total_living = 0 for x in range(world_size.x): for y in range(world_size.y): check_cell_rules(Vector2(x, y)) ## Create the cell using the rendering server func create_cell(pos: Vector2) -> RID: var rs = RenderingServer cell_instance = rs.canvas_item_create() rs.canvas_item_set_parent(cell_instance, get_canvas_item()) var rect: Rect2 = Rect2(-cell_size.x/2, -cell_size.y/2, cell_size.x, cell_size.y) # Centered with cell size rs.canvas_item_add_texture_rect(cell_instance, rect, cell_texture) var pos_fixed = Vector2(pos.x * cell_size.x, pos.y * cell_size.y) var trans = Transform2D(0, pos_fixed) rs.canvas_item_set_transform(cell_instance, trans) return cell_instance func kill_cell(pos: Vector2) -> void: if not world[pos.x][pos.y] is RID: return RenderingServer.free_rid(world[pos.x][pos.y]) world[pos.x][pos.y] = CellStates.DEAD ## Generate the world with the initial cells func generate_world() -> void: for x in range(world_size.x): world.append([]) for y in range(world_size.y): if randi_range(0, 1): total_living += 1 world[x].append(create_cell(Vector2(x, y))) else: world[x].append(CellStates.DEAD) func _on_generation_timer_timeout() -> void: process_generation() generation_counter.text = "Generation: %s" % generation living_cells_counter.text = "Living Cells: %s" % total_living generation_timer.start()